الامتحان التجريبي للصف الثاني عشر للعام ٢٠٢/٢٠٢

الورقة: الأولى

الفرع: العلمي

دولة فلسطين

مدة الامتحان: ساعتان ونصف

المبحث: الرياضيات

وزارة التربية والتعليم العالى

مجموع العلامات: (١٠٠) علامة

التاريخ: / /٢٠٢٢

مديرية التربية والتعليم – خان يونس

القسم الأول : يتكون هذا القسم من ثلاثة أسئلة وعلى المشترك أن يجيب عنها جميعاً

(۳۰ علامة)

السؤال الأول: اختر الإجابة الصحيحة:

۱) إذا كان مقدار تغير الاقتران (m) عنما تتغير (m) عنما تتغير (m) ه (m) ه (m) ه (m)م / (۳) تساوي

• (7

ج) ٩

ب) ۳-

أ) ۹-

Y) ما قیمة $\frac{1}{1}$ $\frac{a^{w^{\dagger}}-a^{w}}{3}$

د) ۲-

ج) ۲

ب) ۲

\- (1

۳) إذا كان ٢س - ص + ك = $صفر ، يمس منحنى الاقتران ق<math>(m) = \frac{7}{m}$ ، m > 0 ، فما قيمة الثابت ك ؟ أ - ع 7- (2 ٤ (ب

> ٤) ما مجموعة قيم ج التي تحددها نظرية رول على الاقتران ق(س) = ٩ في [١،٠] ج)]۱،۰[(ج ب) {٠} [1,1](7 Ø (1

> > ه) إذا كانت ع = $\sqrt{1-6^{7}}$ ، فإن تسارع الجسم في حالة السكون اللحظي يساوي

4 (7

 $\frac{7}{7}$ (ج $\frac{7}{7}$ (ب

اً) ٣

فما هي مجموعة قيم س التي يكون عندها للاقتران ق(س) نقاط حرجة؟

 $1 \geq w \geq 0$ ، ، $\leq w \leq 1$ = (w) = (w)

 $\{r, \frac{1}{7}, r, r\}$ (ع. $\{r, \frac{1}{7}, r\}$ (ج. $\{r, \frac{1}{7}, r\}$ (خ. $\{r, \frac{1}{7}, r\}$

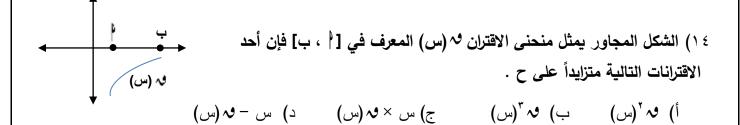
 $^{\vee}$ إذا كان $^{\vee}$ $^{\vee}$

د) ٦

ج) ٤

ب) ۲۶

 $(N_{\rm c})$ اقتران کثیر حدود وکان له $(N_{\rm c})$ قیمة صغری محلیة عند $(N_{\rm c})$ ، وقیمة عظمی محلیة عند $(N_{\rm c})$ ، وکان $(N_{\rm c})$ ، وکان (


(9) ما قيمة الثابت م التي تجعل لمنحنى الاقتران (9) (9

 $= (\frac{\pi}{\xi})' \omega) \circ (\psi) = + | (1 + + \pi | \psi)) \circ (1 + \pi | \psi)) \circ$

(۱۱) إذا كان (0, 0) = لو (0, 0) = لو (0, 0) = لو (0, 0) = لو (0, 0) = لا (0, 0) =

۱۲) إذا كان ق(س) اقتراناً معرفاً على [-۱،۱] ، وكان ق(۱) =۲ ، نها ق(س) =۱، فإنه يوجد عند س=۱ س→

أ) قيمة صغرى محلية با قيمة صغرى مطلقة با قيمة عظمى محلية با قيمة عظمى محلية با قيمة عظمى محلية با قر (۱)=۰

۱٥) إذا كان لمنحنى الاقتران ق(س) = س + س س + أس نقطة انعطاف أفقى فما قيمة $\{ \ \ \ \ \}$

اً) -٣ ج) ١ ج) ٣ - (١

السؤال الثاني: (٢٠علامة)

اً) إذا كان
$$\mathfrak{o}_{\kappa}(\omega) = \sqrt{\omega' - \gamma \omega + 1}$$
 ، $\omega \in \mathbb{R}$ من :

- ۱) مجالات التزايد والتناقص للاقتران 🕫 (س)
- (س) القيم القصوى المحلية والمطلقة للاقتران (x)

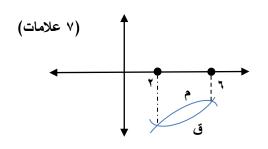
$$(-1.34810)$$
 $+ 7$ س $+ 7$ س $+ 5$ س $+ 7$ س $+ 7$ س $+ 7$ اس $+ 7$ س $+ 7$ ا $+ 7$ س $+ 7$ س $+ 7$ ا $+ 7$ س $+ 7$ س $+ 7$ ا $+ 7$ س $+ 7$ س $+ 7$ ا $+ 7$ س $+ 7$ س $+ 7$ ا $+ 7$ س $+ 7$ س

يحقق شروط نظرية القيمة المتوسطة في [٠،٣] ، جد قيمة الثابتين ١، ب، ثم جد قيمة حقيمة التي تحددها النظرية .

السؤال الثالث: (٢٠علامة)

أ) إذا كان الاقتران
$$(m) = a$$
 جتاس ، $m \in [1, \infty)$ فعين:

۱. فترات التقعر للاقتران (m) (س) ۲. نقط الانعطاف (إن وجدت).


ب) جد معادلة العمودي على المماس لمنحنى العلاقة :
$$m^7 - 3m + m^7 = 1$$
 ، $m^7 - 3m + m^7 = 1$ ، $m^7 - 3m + m^7 = 1$. $m^7 - 3m + m^7 = 1$

القسم الثاني: يتكون هذا القسم من ثلاثة أسئلة وعلى المشترك أن يجيب عن سؤالين فقط.

السؤال الرابع: (١٥علامة)

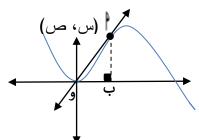
أ) أسقط جسم للأسف ل من سطح بناية سقوطاً حراً وفق العلاقة ف
$$_1(\nu) = 17 \nu^{7}$$
، (٨علامات) وفي اللحظة نفسها رُميَ جسم آخر عمودياً إلى أسفل بسرعة ابتدائية مقدارها ٢٠ م/ث وفق العلاقة ف $_{7}(\nu) = 77 \nu + 17 \nu^{7}$ ، إذا ارتظم الجسم الأول بالأرض بعد نصف ثانية من ارتظام الجسم الثاني بالأرض جد :

- ١) سرعة كل من الجسمين لحظة ارتطامهما بالأرض .
 - ٢) ارتفاع البناية .

ب) الشكل المجاور يمثل منحنى ق(m) ، a(m) في الفترة [7 , 7] بحيث [6 , 7] [6 , 7] ، بين أن الاقتران [6 , 7] مقعراً لأعلى في [7 , 7] .

اقلب الصفحة

السؤال الخامس: (١٥علامات)


أ) Δ أب جمتساوي الساقين طول كل من ساقيه أب = أج = مسم ، وطول القاعدة (۸ علامات) $\dot{\Delta}$ ب جمسم جد مساحة أكبر مثلث يمكن رسمه داخل $\dot{\Delta}$ أب جب بحيث قاعدته توازي قاعدة $\dot{\Delta}$ أب و رؤوسه تقع على أضلاع $\dot{\Delta}$ أب .

ب) إذا كان
$$ص = لو (س + $\sqrt{w^{7} + 1})$ أثبت أن : $(w^{7} + 1)$ $ص + m$ $ص = -1$$$

السؤال السادس: (١٥ علامات)

(۸ علامات)

أ) تتحرك النقطة (m, m) على منحنى الاقتران (m, m) بحيث ميل المماس عندها في أي لحظة يعطى بالعلاقة (m, m) ، (m, m) ، (m, m) ، (m, m) ، (m, m) مكنة للمثلث (m, m) حيث (m, m) نقطة الأصل .

$$\frac{1}{2}$$
 با إذا كان $\frac{1}{2} = \frac{1}{2} = \frac{$

انتهت الأسئلة